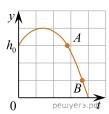

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. График зависимости напряжения U на проводнике от его сопротивления R при силе тока I = const представлен на рисунке, обозначенном цифрой:


2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момент времени <i>t</i> , с	0,0	2,0	4,0
Координата x , м	-3,0	0,0	9,0

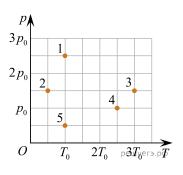
Проекция ускорения a_x автомобиля на ось Ox равна:

1) 1,0
$$\text{m/c}^2$$
 2) 1,5 m/c^2 3) 2,0 m/c^2 4) 2,5 m/c^2 5) 3,0 m/c^2

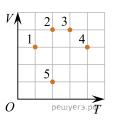
3. На рисунке представлен график зависимости координаты y тела, брошенного вертикально вверх с высоты h_0 , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.

1)
$$v_B = 9v_A$$
 2) $v_B = 3\sqrt{3}v_A$ 3) $v_B = 3v_A$ 4) $v_B = \sqrt{3}v_A$ 5) $v_B = \sqrt{2}v_A$

4. На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0~H~u~F_2=3.0~H$, направленные под углом $\alpha=90^\circ$ друг к другу. Модуль ускорения а этой точки равен:


1)
$$2.0 \text{ m/c}^2$$
 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2

5. Шайба массой $m = 90 \, \Gamma$ подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $v_2=v_1$. Если модуль изменения импульса шайбы $|\Delta p|=2,7$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{c}$, то модуль скорости шайбы υ₂ непосредственно после ее удара о борт равен:


1)
$$5\frac{M}{C}$$
 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$ 5) $40\frac{M}{C}$

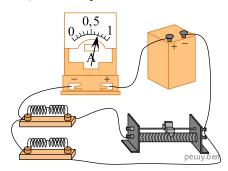
6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/c. Если частота колебаний частиц шнура v = 2,0 Γ ц, то разность фаз $\Delta \varphi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

7. На р — Т диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{max} молекул газа обозначено цифрой:

8. На V-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

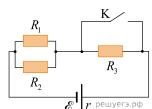
9. Идеальный одноатомный газ, количество вещества которого $v = \frac{1}{8.31}$ моль, отдал количе-

ство теплоты |Q|=20 Дж. Если при этом температура газа уменьшилась на $|\Delta t|=20$ °C, то: 1) над газом совершили работу $A' = 10 \, \text{Дж};$ 2) над газом совершили работу A' = 50 Дж;

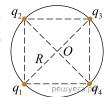

3) газ не совершал работу A = 0 Дж;

4) газ совершил работу $A = 50 \, Дж;$

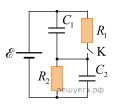
5) газ совершил работу $A = 10 \, \text{Дж}$.


10. Сосуд, плотно закрытый подвижным поринем, заполнен воздухом. В результате изотермического расширения объём воздуха в сосуде увеличился в два раза. Если относительная влажность воздуха в конечном состоянии $\phi_2 = 40\%$, то в начальном состоянии относительная влажность ϕ_1 воздуха была равна:

11. На рисунке изображена электрическая цепь, подключённая к источнику постоянного напряжения с пренебрежимо малым внутренним сопротивлением. Сопротивления каждого резистора и всей намотки реостата одинаковы, амперметр — идеальный. Если ЭДС источника $\mathcal{E}=50~\mathrm{B}$, то после перемещения ползунка реостата из среднего положения в крайнее левое положение во внешней цепи будет выделяться тепловая мощность P, равная ... Pm.

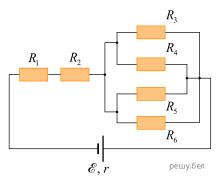


- 12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой $m=30~{\rm K}\Gamma$, площадь основания которого $S=0,080~{\rm M}^2$. Если давление, оказываемое чемоданом на пол, $p=2,4~{\rm K}\Pi{\rm a}$, то модуль ускорения а лифта равен ... $\frac{{\rm AM}}{{\rm c}^2}$.
- 13. На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=31\,$ м. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,65,$ то модуль скорости v_0 движения автомобиля в начале тормозного пути равен ... $\frac{M}{C}$.
- 14. На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- 15. Зависимость координаты х пружинного маятника, совершающего колебания вдоль горизонтальной оси Ох, от времени t имеет вид $x(t) = A\sin(\omega t + \varphi_0)$, где $\omega = \frac{17\pi}{18}~{\rm pag/c}$, $\varphi_0 = \frac{2\pi}{9}~{\rm pag}$. Если в момент времени t=1,0 с потенциальная энергия пружины $E_{\pi} = 9,0~{\rm MДж}$, то полная механическая энергия E маятника равна ... мДж.
- 16. Внутри электрочайника, электрическая мощность которого P=700 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода $\left(c=4200\frac{\square \text{ж}}{\text{кг}\cdot\text{°C}}\right)$ массой m=1,0 кг. Во включённом в сеть электрическом чайнике вода нагрелась от температуры $t_1=88,0$ °C до температуры $t_2=92,0$ °C за время $\tau_1=40$ с. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное ... с. Примечание. Мощность тепловых потерь электрочайника считать постоянной.
- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_1 = 326$ К, то его конечная температура T_2 равна ... K.


18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00~{\rm OM},~R_3=2,00~{\rm OM}.$ По цепи в течение промежутка времени $t=30,0~{\rm C}$ проходит электрический ток. Если ЭДС источника тока $\varepsilon=12,0~{\rm B},~a$ его внутреннее сопротивление $r=1,00~{\rm OM},$ то работа $A_{\rm cm}$ сторонних сил источника тока при разомкнутом ключе K равна ... Дж.

19. На окружности радиуса $R=3.0~{\rm cm}$ в вершинах квадрата расположены электрические точечные заряды $q_1=5.0~{\rm nKn},~q_2=q_3=2.0~{\rm nKn},~q_4=-2.0~{\rm nKn}$ (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка O), равен ... кB/м.

- **20.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 2.0 A, C = 1.0 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 8.0$ с до $t_2 = 12$ с? Ответ приведите в кулонах.
- **21.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n=1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, $S=740~{\rm cm}^2$, то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100~{\rm Mk\Phi},~C_2=300~{\rm Mk\Phi},~\Im {\rm JC}$ источника тока ${\it E}=60,0~{\rm B}.$ Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... **мДж**.

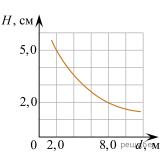

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}\mathrm{Xe}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~\mathrm{cyt.},$ то $\Delta N=90000$ ядер $^{133}_{54}\mathrm{Xe}$ распадётся за промежуток времени Δt , равный ... сут.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7 \ \kappa Bm \cdot ч$, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Bm.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого $r=0.50~\rm{Om}$, и резистора сопротивлением $R=10~\rm{Om}$. Если сила тока в цепи $I=2.0~\rm{A}$, то ЭДС $\mathcal E$ источника тока равна ... B.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \, O_M.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90.0$ Вт. Если внутреннее сопротивление источника тока r = 4.00 Ом, то ЭДС \mathcal{E} источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции В магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

 Γ рафик зависимости высоты H изображения карандаша, полученного c помощью тонкой рассеивающей линзы, от расстояния d между линзой d карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... dм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

